Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How wind drives the correlation between leaf shape and mechanical properties.

Identifieur interne : 000E44 ( Main/Exploration ); précédent : 000E43; suivant : 000E45

How wind drives the correlation between leaf shape and mechanical properties.

Auteurs : Jean-François Louf [États-Unis] ; Logan Nelson [États-Unis] ; Hosung Kang [États-Unis] ; Pierre Ntoh Song [France] ; Tim Zehnbauer [États-Unis] ; Sunghwan Jung [États-Unis]

Source :

RBID : pubmed:30397247

Descripteurs français

English descriptors

Abstract

From a geometrical point of view, a non-sessile leaf is composed of two parts: a large flat plate called the lamina, and a long beam called the petiole which connects the lamina to the branch/stem. While wind is exerting force (e.g. drag) on the lamina, the petiole undergoes twisting and bending motions. To survive in harsh abiotic conditions, leaves may have evolved to form in different shapes, resulting from a coupling between the lamina geometry and the petiole mechanical properties. In this study, we measure the shape of laminae from 120 simple leaf species (no leaflets). Leaves of the same species are found to be geometrically similar regardless of their size. From tensile/torsional tests, we characterize the bending rigidity (EI) and the twisting rigidity (GJ) of 15 petioles of 4 species in the Spring/Summer: Red Oak (Quercus Rubra), American Sycamore (Platanus occidentalis), Yellow Poplar (Liriodendron tulipifera), and Sugar Maple (Acer saccharum). A twist-to-bend ratio EI/GJ is found to be around 4.3, within the range in previous studies conducted on similar species (EI/GJ = 2.7~8.0 reported in S. Vogel, 1992). In addition, we develop a simple energetic model to find a relation between geometrical shapes and mechanical properties (EI/GJ = 2LL/WC where LL is the laminar length and WC is the laminar width), verified with experimental data. Lastly, we discuss leaf's ability to reduce stress at the stem-petiole junction by choosing certain geometry, and also present exploratory results on the effect that seasons have on the Young's and twisting moduli.

DOI: 10.1038/s41598-018-34588-0
PubMed: 30397247
PubMed Central: PMC6218545


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How wind drives the correlation between leaf shape and mechanical properties.</title>
<author>
<name sortKey="Louf, Jean Francois" sort="Louf, Jean Francois" uniqKey="Louf J" first="Jean-François" last="Louf">Jean-François Louf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061</wicri:regionArea>
<wicri:noRegion>24061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Logan" sort="Nelson, Logan" uniqKey="Nelson L" first="Logan" last="Nelson">Logan Nelson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061</wicri:regionArea>
<wicri:noRegion>24061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, Hosung" sort="Kang, Hosung" uniqKey="Kang H" first="Hosung" last="Kang">Hosung Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061</wicri:regionArea>
<wicri:noRegion>24061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Pierre Ntoh" sort="Song, Pierre Ntoh" uniqKey="Song P" first="Pierre Ntoh" last="Song">Pierre Ntoh Song</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, Aix-Marseille Universite, Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Department of Mechanical Engineering, Aix-Marseille Universite, Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zehnbauer, Tim" sort="Zehnbauer, Tim" uniqKey="Zehnbauer T" first="Tim" last="Zehnbauer">Tim Zehnbauer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061</wicri:regionArea>
<wicri:noRegion>24061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jung, Sunghwan" sort="Jung, Sunghwan" uniqKey="Jung S" first="Sunghwan" last="Jung">Sunghwan Jung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA. sunnyjsh@cornell.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061</wicri:regionArea>
<wicri:noRegion>24061</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA. sunnyjsh@cornell.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853</wicri:regionArea>
<orgName type="university">Université Cornell</orgName>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30397247</idno>
<idno type="pmid">30397247</idno>
<idno type="doi">10.1038/s41598-018-34588-0</idno>
<idno type="pmc">PMC6218545</idno>
<idno type="wicri:Area/Main/Corpus">000B87</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B87</idno>
<idno type="wicri:Area/Main/Curation">000B87</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B87</idno>
<idno type="wicri:Area/Main/Exploration">000B87</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How wind drives the correlation between leaf shape and mechanical properties.</title>
<author>
<name sortKey="Louf, Jean Francois" sort="Louf, Jean Francois" uniqKey="Louf J" first="Jean-François" last="Louf">Jean-François Louf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061</wicri:regionArea>
<wicri:noRegion>24061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Logan" sort="Nelson, Logan" uniqKey="Nelson L" first="Logan" last="Nelson">Logan Nelson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061</wicri:regionArea>
<wicri:noRegion>24061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, Hosung" sort="Kang, Hosung" uniqKey="Kang H" first="Hosung" last="Kang">Hosung Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061</wicri:regionArea>
<wicri:noRegion>24061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Pierre Ntoh" sort="Song, Pierre Ntoh" uniqKey="Song P" first="Pierre Ntoh" last="Song">Pierre Ntoh Song</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, Aix-Marseille Universite, Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Department of Mechanical Engineering, Aix-Marseille Universite, Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zehnbauer, Tim" sort="Zehnbauer, Tim" uniqKey="Zehnbauer T" first="Tim" last="Zehnbauer">Tim Zehnbauer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061</wicri:regionArea>
<wicri:noRegion>24061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jung, Sunghwan" sort="Jung, Sunghwan" uniqKey="Jung S" first="Sunghwan" last="Jung">Sunghwan Jung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA. sunnyjsh@cornell.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061</wicri:regionArea>
<wicri:noRegion>24061</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA. sunnyjsh@cornell.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853</wicri:regionArea>
<orgName type="university">Université Cornell</orgName>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanical Phenomena (MeSH)</term>
<term>Mechanical Phenomena (MeSH)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plants (anatomy & histology)</term>
<term>Seasons (MeSH)</term>
<term>Wind (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Phénomènes biomécaniques (MeSH)</term>
<term>Phénomènes mécaniques (MeSH)</term>
<term>Plantes (anatomie et histologie)</term>
<term>Saisons (MeSH)</term>
<term>Vent (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Mechanical Phenomena</term>
<term>Seasons</term>
<term>Wind</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phénomènes biomécaniques</term>
<term>Phénomènes mécaniques</term>
<term>Saisons</term>
<term>Vent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">From a geometrical point of view, a non-sessile leaf is composed of two parts: a large flat plate called the lamina, and a long beam called the petiole which connects the lamina to the branch/stem. While wind is exerting force (e.g. drag) on the lamina, the petiole undergoes twisting and bending motions. To survive in harsh abiotic conditions, leaves may have evolved to form in different shapes, resulting from a coupling between the lamina geometry and the petiole mechanical properties. In this study, we measure the shape of laminae from 120 simple leaf species (no leaflets). Leaves of the same species are found to be geometrically similar regardless of their size. From tensile/torsional tests, we characterize the bending rigidity (EI) and the twisting rigidity (GJ) of 15 petioles of 4 species in the Spring/Summer: Red Oak (Quercus Rubra), American Sycamore (Platanus occidentalis), Yellow Poplar (Liriodendron tulipifera), and Sugar Maple (Acer saccharum). A twist-to-bend ratio EI/GJ is found to be around 4.3, within the range in previous studies conducted on similar species (EI/GJ = 2.7~8.0 reported in S. Vogel, 1992). In addition, we develop a simple energetic model to find a relation between geometrical shapes and mechanical properties (EI/GJ = 2L
<sub>L</sub>
/W
<sub>C</sub>
where L
<sub>L</sub>
is the laminar length and W
<sub>C</sub>
is the laminar width), verified with experimental data. Lastly, we discuss leaf's ability to reduce stress at the stem-petiole junction by choosing certain geometry, and also present exploratory results on the effect that seasons have on the Young's and twisting moduli.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30397247</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>How wind drives the correlation between leaf shape and mechanical properties.</ArticleTitle>
<Pagination>
<MedlinePgn>16314</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-018-34588-0</ELocationID>
<Abstract>
<AbstractText>From a geometrical point of view, a non-sessile leaf is composed of two parts: a large flat plate called the lamina, and a long beam called the petiole which connects the lamina to the branch/stem. While wind is exerting force (e.g. drag) on the lamina, the petiole undergoes twisting and bending motions. To survive in harsh abiotic conditions, leaves may have evolved to form in different shapes, resulting from a coupling between the lamina geometry and the petiole mechanical properties. In this study, we measure the shape of laminae from 120 simple leaf species (no leaflets). Leaves of the same species are found to be geometrically similar regardless of their size. From tensile/torsional tests, we characterize the bending rigidity (EI) and the twisting rigidity (GJ) of 15 petioles of 4 species in the Spring/Summer: Red Oak (Quercus Rubra), American Sycamore (Platanus occidentalis), Yellow Poplar (Liriodendron tulipifera), and Sugar Maple (Acer saccharum). A twist-to-bend ratio EI/GJ is found to be around 4.3, within the range in previous studies conducted on similar species (EI/GJ = 2.7~8.0 reported in S. Vogel, 1992). In addition, we develop a simple energetic model to find a relation between geometrical shapes and mechanical properties (EI/GJ = 2L
<sub>L</sub>
/W
<sub>C</sub>
where L
<sub>L</sub>
is the laminar length and W
<sub>C</sub>
is the laminar width), verified with experimental data. Lastly, we discuss leaf's ability to reduce stress at the stem-petiole junction by choosing certain geometry, and also present exploratory results on the effect that seasons have on the Young's and twisting moduli.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Louf</LastName>
<ForeName>Jean-François</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nelson</LastName>
<ForeName>Logan</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Hosung</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Pierre Ntoh</ForeName>
<Initials>PN</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, Aix-Marseille Universite, Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zehnbauer</LastName>
<ForeName>Tim</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jung</LastName>
<ForeName>Sunghwan</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-1420-7921</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA. sunnyjsh@cornell.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA. sunnyjsh@cornell.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Sci Rep. 2020 May 12;10(1):8099</RefSource>
<PMID Version="1">32393852</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055595" MajorTopicYN="Y">Mechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="Y">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014919" MajorTopicYN="Y">Wind</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30397247</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-018-34588-0</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-018-34588-0</ArticleId>
<ArticleId IdType="pmc">PMC6218545</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Provence-Alpes-Côte d'Azur</li>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
<li>Marseille</li>
</settlement>
<orgName>
<li>Université Cornell</li>
<li>Université d'Aix-Marseille</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Louf, Jean Francois" sort="Louf, Jean Francois" uniqKey="Louf J" first="Jean-François" last="Louf">Jean-François Louf</name>
</noRegion>
<name sortKey="Jung, Sunghwan" sort="Jung, Sunghwan" uniqKey="Jung S" first="Sunghwan" last="Jung">Sunghwan Jung</name>
<name sortKey="Jung, Sunghwan" sort="Jung, Sunghwan" uniqKey="Jung S" first="Sunghwan" last="Jung">Sunghwan Jung</name>
<name sortKey="Kang, Hosung" sort="Kang, Hosung" uniqKey="Kang H" first="Hosung" last="Kang">Hosung Kang</name>
<name sortKey="Nelson, Logan" sort="Nelson, Logan" uniqKey="Nelson L" first="Logan" last="Nelson">Logan Nelson</name>
<name sortKey="Zehnbauer, Tim" sort="Zehnbauer, Tim" uniqKey="Zehnbauer T" first="Tim" last="Zehnbauer">Tim Zehnbauer</name>
</country>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Song, Pierre Ntoh" sort="Song, Pierre Ntoh" uniqKey="Song P" first="Pierre Ntoh" last="Song">Pierre Ntoh Song</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30397247
   |texte=   How wind drives the correlation between leaf shape and mechanical properties.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30397247" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020